Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 15 de 15
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Hypertension ; 81(4): 861-875, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38361240

RESUMEN

BACKGROUND: Chemerin, an inflammatory adipokine, is upregulated in preeclampsia, and its placental overexpression results in preeclampsia-like symptoms in mice. Statins may lower chemerin. METHODS: Chemerin was determined in a prospective cohort study in women suspected of preeclampsia and evaluated as a predictor versus the sFlt-1 (soluble fms-like tyrosine kinase-1)/PlGF (placental growth factor) ratio. Chemerin release was studied in perfused placentas and placental explants with or without the statins pravastatin and fluvastatin. We also addressed statin placental passage and the effects of chemerin in chorionic plate arteries. RESULTS: Serum chemerin was elevated in women with preeclampsia, and its addition to a predictive model yielded significant effects on top of the sFlt-1/PlGF ratio to predict preeclampsia and its fetal complications. Perfused placentas and explants of preeclamptic women released more chemerin and sFlt-1 and less PlGF than those of healthy pregnant women. Statins reversed this. Both statins entered the fetal compartment, and the fetal/maternal concentration ratio of pravastatin was twice that of fluvastatin. Chemerin constricted plate arteries, and this was blocked by a chemerin receptor antagonist and pravastatin. Chemerin did not potentiate endothelin-1 in chorionic plate arteries. In explants, statins upregulated low-density lipoprotein receptor expression, which relies on the same transcription factor as chemerin, and NO release. CONCLUSIONS: Chemerin is a biomarker for preeclampsia, and statins both prevent its placental upregulation and effects, in an NO and low-density lipoprotein receptor-dependent manner. Combined with their capacity to improve the sFlt-1/PlGF ratio, this offers an attractive mechanism by which statins may prevent or treat preeclampsia.


Asunto(s)
Inhibidores de Hidroximetilglutaril-CoA Reductasas , Preeclampsia , Humanos , Embarazo , Femenino , Animales , Ratones , Placenta/metabolismo , Inhibidores de Hidroximetilglutaril-CoA Reductasas/farmacología , Factor de Crecimiento Placentario , Pravastatina/farmacología , Regulación hacia Arriba , Estudios Prospectivos , Preeclampsia/tratamiento farmacológico , Preeclampsia/prevención & control , Fluvastatina/metabolismo , Fluvastatina/farmacología , Receptor 1 de Factores de Crecimiento Endotelial Vascular , Lipoproteínas LDL/metabolismo , Lipoproteínas LDL/farmacología , Biomarcadores , Quimiocinas/metabolismo , Péptidos y Proteínas de Señalización Intercelular/metabolismo
2.
Nutrients ; 15(13)2023 Jun 25.
Artículo en Inglés | MEDLINE | ID: mdl-37447205

RESUMEN

Chemerin is a novel adipokine that plays a major role in adipogenesis and lipid metabolism. It also induces inflammation and affects insulin signaling, steroidogenesis and thermogenesis. Consequently, it likely contributes to a variety of metabolic and cardiovascular diseases, including atherosclerosis, diabetes, hypertension and pre-eclampsia. This review describes its origin and receptors, as well as its role in various diseases, and subsequently summarizes how nutrition affects its levels. It concludes that vitamin A, fat, glucose and alcohol generally upregulate chemerin, while omega-3, salt and vitamin D suppress it. Dietary measures rather than drugs acting as chemerin receptor antagonists might become a novel tool to suppress chemerin effects, thereby potentially improving the aforementioned diseases. However, more detailed studies are required to fully understand chemerin regulation.


Asunto(s)
Enfermedades Cardiovasculares , Resistencia a la Insulina , Embarazo , Femenino , Humanos , Péptidos y Proteínas de Señalización Intercelular , Quimiocinas/metabolismo , Adipoquinas/metabolismo
3.
Lipids Health Dis ; 22(1): 12, 2023 Jan 25.
Artículo en Inglés | MEDLINE | ID: mdl-36698175

RESUMEN

BACKGROUND: The adipokine chemerin regulates adipogenesis and the metabolic function of both adipocytes and liver. Chemerin is elevated in preeclamptic women, and overexpression of chemerin in placental trophoblasts induces preeclampsia-like symptoms in mice. Preeclampsia is known to be accompanied by dyslipidemia, albeit via unknown mechanisms. Here, we hypothesized that chemerin might be a contributor to dyslipidemia. METHODS: Serum lipid fractions as well as lipid-related genes and proteins were determined in pregnant mice with chemerin overexpression in placental trophoblasts and chemerin-overexpressing human trophoblasts. In addition, a phospholipidomics analysis was performed in chemerin-overexpressing trophoblasts. RESULTS: Overexpression of chemerin in trophoblasts increased the circulating and placental levels of cholesterol rather than triglycerides. It also increased the serum levels of lysophosphatidic acid, high-density lipoprotein cholesterol (HDL-C), and and low-density lipoprotein cholesterol (LDL-C), and induced placental lipid accumulation. Mechanistically, chemerin upregulated the levels of peroxisome proliferator-activated receptor g, fatty acid-binding protein 4, adiponectin, sterol regulatory element-binding protein 1 and 2, and the ratio of phosphorylated extracellular signal-regulated protein kinase (ERK)1/2 / total ERK1/2 in the placenta of mice and human trophoblasts. Furthermore, chemerin overexpression in human trophoblasts increased the production of lysophospholipids and phospholipids, particularly lysophosphatidylethanolamine. CONCLUSIONS: Overexpression of placental chemerin production disrupts trophoblast lipid metabolism, thereby potentially contributing to dyslipidemia in preeclampsia.


Asunto(s)
Quimiocinas , Dislipidemias , Preeclampsia , Femenino , Humanos , Embarazo , Adipoquinas/metabolismo , Colesterol/metabolismo , Dislipidemias/genética , Dislipidemias/metabolismo , Placenta/metabolismo , Triglicéridos/metabolismo , Trofoblastos/metabolismo , Animales , Ratones , Quimiocinas/genética
4.
Thyroid ; 33(5): 625-631, 2023 05.
Artículo en Inglés | MEDLINE | ID: mdl-36416258

RESUMEN

Background: Fetal development is crucially dependent on thyroid hormone (TH). Maternal-to-fetal transfer of TH is a prerequisite for fetal TH availability, particularly in the first half of pregnancy. The mechanisms of transplacental transport of TH, however, are yet poorly understood. We, therefore, investigated the TH transport processes across human placentas using an ex vivo perfusion system. Methods: Intact cotyledons from term placentas of uncomplicated pregnancies were cannulated within 30 minutes after delivery and the maternal and fetal circulations were re-established. One hundred nanomolar thyroxine (T4) was added to either the maternal or fetal circulation and perfusions run up to three hours during which samples were taken from both circulations at different time points. Variables included addition of iopanoic acid (IOP) to block activity of the deiodinase type 3 (D3) and bovine serum albumin (BSA) to trap released T4. T4 and 3,3',5'-triiodothyronine concentrations in the perfusates were measured by radioimmunoassays. Results: Maternal-to-fetal transfer was slow, with T4 barely detectable in the fetal circulation unless D3 was blocked by IOP. Fetal T4 was detected after three hours perfusion (10.6 ± 0.6 nM) when BSA (34 g/L) was added in the fetal circulation to trap the released T4. In contrast, fetal-to-maternal transfer of T4 was rapid and maternal T4 increased to 43.6 ± 5.5 nM. Conclusions: Maternal-to-fetal T4 transport is limited, whereas fetal-to-maternal transport is rapid indicating that T4 transport across human term placenta is an asymmetrical process. With the high D3 activity, our observations are compatible with a protective role of the placental barrier. Future studies should reveal how the placenta exerts its gatekeeper function in ensuring optimal TH passage to the fetus.


Asunto(s)
Placenta , Tiroxina , Embarazo , Humanos , Femenino , Triyodotironina , Hormonas Tiroideas , Feto
5.
PLoS Negl Trop Dis ; 16(4): e0010359, 2022 04.
Artículo en Inglés | MEDLINE | ID: mdl-35442976

RESUMEN

A Zika virus (ZIKV) infection during pregnancy can result in severe birth defects such as microcephaly. To date, it is incompletely understood how ZIKV can cross the human placenta. Furthermore, results from studies in pregnant mice and non-human primates are conflicting regarding the role of cross-reactive dengue virus (DENV) antibodies on transplacental ZIKV transmission. Elucidating how ZIKV can cross the placenta and which risk factors contribute to this is important for risk assessment and for potential intervention strategies for transplacental ZIKV transmission. In this study we use an ex vivo human placental perfusion model to study transplacental ZIKV transmission and the effect that cross-reactive DENV antibodies have on this transmission. By using this model, we demonstrate that DENV antibodies significantly increase ZIKV uptake in perfused human placentas and that this increased uptake is neonatal Fc-receptor-dependent. Furthermore, we show that cross-reactive DENV antibodies enhance ZIKV infection in term human placental explants and in primary fetal macrophages but not in primary trophoblasts. Our data supports the hypothesis that presence of cross-reactive DENV antibodies could be an important risk factor for transplacental ZIKV transmission. Furthermore, we demonstrate that the ex vivo placental perfusion model is a relevant and animal friendly model to study transplacental pathogen transmission.


Asunto(s)
Virus del Dengue , Dengue , Infección por el Virus Zika , Virus Zika , Animales , Anticuerpos Antivirales , Reacciones Cruzadas , Modelos Animales de Enfermedad , Femenino , Humanos , Ratones , Placenta , Embarazo
6.
Clin Sci (Lond) ; 136(4): 257-272, 2022 02 25.
Artículo en Inglés | MEDLINE | ID: mdl-35103285

RESUMEN

Maternal circulating levels of the adipokine chemerin are elevated in preeclampsia, but its origin and contribution to preeclampsia remain unknown. We therefore studied (1) placental chemerin expression and release in human pregnancy, and (2) the consequences of chemerin overexpression via lentivirus-mediated trophoblast-specific gene manipulation in both mice and immortalized human trophoblasts. Placental chemerin expression and release were increased in women with preeclampsia, and their circulating chemerin levels correlated positively with the soluble Fms-like tyrosine kinase-1 (sFlt-1)/placental growth factor (PlGF) ratio, a well-known biomarker of preeclampsia severity. Placental trophoblast chemerin overexpression in mice induced a preeclampsia-like syndrome, involving hypertension, proteinuria, and endotheliosis, combined with diminished trophoblast invasion, a disorganized labyrinth layer, and up-regulation of sFlt-1 and the inflammation markers nuclear factor-κB (NFκB), tumor necrosis factor (TNF)-α, and interleukin (IL)-1ß. It also led to embryo resorption, while maternal serum chemerin levels correlated negatively with fetal weight in mice. Chemerin overexpression in human trophoblasts up-regulated sFlt-1, reduced vascular endothelial factor-A, and inhibited migration and invasion, as well as tube formation during co-culture with human umbilical vein endothelial cells (HUVECs). The chemokine-like receptor 1 (CMKLR1) antagonist α-NETA prevented the latter phenomenon, although it did not reverse the chemerin-induced down-regulation of the phosphoinositide 3-kinase/Akt pathway. In conclusion, up-regulation of placental chemerin synthesis disturbs normal placental development via its CMKLR1 receptor, thereby contributing to fetal growth restriction/resorption and the development of preeclampsia. Chemerin might be a novel biomarker of preeclampsia, and inhibition of the chemerin/CMKLR1 pathway is a promising novel therapeutic strategy to treat preeclampsia.


Asunto(s)
Quimiocinas/metabolismo , Péptidos y Proteínas de Señalización Intercelular/metabolismo , Preeclampsia/etiología , Trofoblastos/patología , Animales , Línea Celular , Quimiocinas/genética , Femenino , Células Endoteliales de la Vena Umbilical Humana , Humanos , Péptidos y Proteínas de Señalización Intercelular/genética , Ratones , Placenta/metabolismo , Placenta/patología , Factor de Crecimiento Placentario/metabolismo , Embarazo , Resultado del Embarazo , Trofoblastos/metabolismo , Receptor 1 de Factores de Crecimiento Endotelial Vascular/metabolismo
7.
Int J Mol Sci ; 23(2)2022 Jan 15.
Artículo en Inglés | MEDLINE | ID: mdl-35055127

RESUMEN

Pregnancy loss (PL) is one of the common complications that women can experience during pregnancy, with an occurrence rate of 1 to 5%. The potential causes of pregnancy loss are unclear, with no effective treatment modalities being available. It has been previously reported that the level of miR-125b was significantly increased in placentas of PL patients. However, the role of miR-125b in the development of PL still remains unknown. In the current study, an miR-125b placenta-specific over-expression model was constructed by lentiviral transfecting zona-free mouse embryos followed by embryo transfer. On gestation day 15, it was observed that the placenta was significantly smaller in the miR-125b placenta-specific overexpression group than the control group. Additionally, the abortion rate of the miR-125b placenta-specific overexpression group was markedly higher than in the control group. The blood vessel diameter was larger in the miR-125b-overexpressing specific placenta. In addition, miR-125b-overexpressing HTR8 and JEG3 cell lines were also generated to analyze the migration and invasion ability of trophoblasts. The results showed that miR-125b overexpression significantly suppressed the migration and invasion ability of HTR8 and JEG3 cells. Overall, our results demonstrated that miR-125b can affect embryo implantation through modulating placenta angiogenesis and trophoblast cell invasion capacity that can lead to PL.


Asunto(s)
Aborto Espontáneo/genética , MicroARNs/genética , Placenta/química , Regulación hacia Arriba , Animales , Estudios de Casos y Controles , Línea Celular , Modelos Animales de Enfermedad , Femenino , Humanos , Ratones , Especificidad de Órganos , Embarazo
8.
Int J Mol Sci ; 22(14)2021 Jul 10.
Artículo en Inglés | MEDLINE | ID: mdl-34299027

RESUMEN

Soluble Fms-like tyrosine kinase-1 (sFlt-1) is increased in pre-eclampsia. The proton pump inhibitor (PPI) lowers sFlt-1, while angiotensin increases it. To investigate whether PPIs lower sFlt-1 by suppressing placental renin-angiotensin system (RAS) activity, we studied gene expression and protein abundance of RAS components, including megalin, a novel endocytic receptor for prorenin and renin, in placental tissue obtained from healthy pregnant women and women with early-onset pre-eclampsia. Renin, ACE, ACE2, and the angiotensin receptors were expressed at identical levels in healthy and pre-eclamptic placentas, while both the (pro)renin receptor and megalin were increased in the latter. Placental prorenin levels were upregulated in pre-eclamptic pregnancies. Angiotensinogen protein, but not mRNA, was detectable in placental tissue, implying that it originates from maternal blood. Ex vivo placental perfusion revealed a complete washout of angiotensinogen, while prorenin release remained constant. The PPI esomeprazole dose-dependently reduced megalin/(pro)renin receptor-mediated renin uptake in Brown Norway yolk sac epithelial cells and decreased sFlt-1 secretion from placental villous explants. Megalin inhibition blocked angiotensinogen uptake in epithelial cells. In conclusion, our data suggest that placental RAS activity depends on angiotensinogen taken up from the maternal systemic circulation. PPIs might interfere with placental (pro)renin-AGT uptake/transport, thereby reducing angiotensin formation as well as angiotensin-induced sFlt-1 synthesis.


Asunto(s)
Proteína 2 Relacionada con Receptor de Lipoproteína de Baja Densidad/metabolismo , Placenta/patología , Preeclampsia/patología , Inhibidores de la Bomba de Protones/farmacología , Sistema Renina-Angiotensina , Receptor 1 de Factores de Crecimiento Endotelial Vascular/metabolismo , Adulto , Estudios de Casos y Controles , Femenino , Humanos , Proteína 2 Relacionada con Receptor de Lipoproteína de Baja Densidad/genética , Placenta/efectos de los fármacos , Placenta/metabolismo , Preeclampsia/tratamiento farmacológico , Preeclampsia/metabolismo , Embarazo
9.
Biomaterials ; 276: 121030, 2021 09.
Artículo en Inglés | MEDLINE | ID: mdl-34298442

RESUMEN

Metabolic dysfunction-associated fatty liver disease (MAFLD) is estimated to affect a quarter of all population and represents a major health threat to all societies. Yet, currently no approved pharmacological treatment is available for MAFLD. H2-rich water has recently been reported to reduce hepatic lipid accumulation in MAFLD patients but its efficacy is limited due to low H2 dosage. Increasing H2 dose may enhance its therapeutic effects but remains technically challenging. In this study, we designed and synthesized a hydrogen nanocapsule by encapsulating ammonia borane into hollow mesoporous silica nanoparticles to achieve ultrahigh and sustained H2 release in the gut. We then investigated its efficacy in treating early-stage MAFLD and other metabolic dysfunctions such as obesity and diabetes. The hydrogen nanocapsule attenuated both diet-induced and genetic mutation induced early-stage MAFLD, obesity, and diabetes in mice, without any tissue toxicity. Mechanistically, we discovered that sustained and ultrahigh H2 supply by hydrogen nanocapsule increased, among other species, the abundance of Akkermansia muciniphila, highlighting reshaped gut microbiota as a potential mechanism of H2 in treating metabolic dysfunctions. Moreover, hepatic transcriptome showed a reprogramed liver metabolism profile with reduced lipid synthesis and increased fatty acid metabolism.


Asunto(s)
Nanocápsulas , Enfermedad del Hígado Graso no Alcohólico , Animales , Humanos , Metabolismo de los Lípidos , Ratones , Nanocápsulas/uso terapéutico , Enfermedad del Hígado Graso no Alcohólico/tratamiento farmacológico , Obesidad
10.
Front Cardiovasc Med ; 8: 725203, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-35004870

RESUMEN

Objective: Elevated plasma cholesterol concentrations contributes to ischemic cardiovascular diseases. Recently, we showed that inhibiting hepatic (pro)renin receptor [(P)RR] attenuated diet-induced hypercholesterolemia and hypertriglyceridemia in low-density lipoprotein receptor (LDLR) deficient mice. The purpose of this study was to determine whether inhibiting hepatic (P)RR could attenuate atherosclerosis. Approach and Results: Eight-week-old male LDLR-/- mice were injected with either saline or N-acetylgalactosamine-modified antisense oligonucleotides (G-ASOs) primarily targeting hepatic (P)RR and were fed a western-type diet (WTD) for 16 weeks. (P)RR G-ASOs markedly reduced plasma cholesterol concentrations from 2,211 ± 146 to 1,128 ± 121 mg/dL. Fast protein liquid chromatography (FPLC) analyses revealed that cholesterol in very low-density lipoprotein (VLDL) and intermediate density lipoprotein (IDL)/LDL fraction were potently reduced by (P)RR G-ASOs. Moreover, (P)RR G-ASOs reduced plasma triglyceride concentrations by more than 80%. Strikingly, despite marked reduction in plasma lipid concentrations, atherosclerosis was not reduced but rather increased in these mice. Further testing in ApoE-/- mice confirmed that (P)RR G-ASOs reduced plasma lipid concentrations but not atherosclerosis. Transcriptomic analysis of the aortas revealed that (P)RR G-ASOs induced the expression of the genes involved in immune responses and inflammation. Further investigation revealed that (P)RR G-ASOs also inhibited (P)RR in macrophages and in enhanced inflammatory responses to exogenous stimuli. Moreover, deleting the (P)RR in macrophages resulted in accelerated atherosclerosis in WTD fed ApoE-/- mice. Conclusion: (P)RR G-ASOs reduced the plasma lipids in atherosclerotic mice due to hepatic (P)RR deficiency. However, augmented pro-inflammatory responses in macrophages due to (P)RR downregulation counteracted the beneficial effects of lowered plasma lipid concentrations on atherosclerosis. Our study demonstrated that hepatic (P)RR and macrophage (P)RR played a counteracting role in atherosclerosis.

11.
PLoS One ; 15(5): e0225356, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-32437440

RESUMEN

High plasma LDL cholesterol (LDL-c) concentration is a major risk factor for atherosclerosis. Hepatic LDL receptor (LDLR) regulates LDL metabolism, and thereby plasma LDL-c concentration. Recently, we have identified the (pro)renin receptor [(P)RR] as a novel regulator of LDL metabolism, which regulates LDLR degradation and hence its protein abundance and activity. In silico analysis suggests that the (P)RR is a target of miR-148a. In this study we determined whether miR-148a could regulate LDL metabolism by regulating (P)RR expression in HepG2 and Huh7 cells. We found that miR-148a suppressed (P)RR expression by binding to the 3'-untranslated regions (3'-UTR) of the (P)RR mRNA. Mutating the binding sites for miR-148a in the 3'-UTR of (P)RR mRNA completely abolished the inhibitory effects of miR-148a on (P)RR expression. In line with our recent findings, reduced (P)RR expression resulted in decreased cellular LDL uptake, likely as a consequence of decreased LDLR protein abundance. Overexpressing the (P)RR prevented miR-148a-induced reduction in LDLR abundance and cellular LDL uptake. Our study supports a new concept that miR-148a is a regulator of (P)RR expression. By reducing (P)RR abundance, miR-148a decreases LDLR protein abundance and consequently cellular LDL uptake.


Asunto(s)
Lipoproteínas LDL/metabolismo , MicroARNs/fisiología , Receptores de Superficie Celular/metabolismo , Receptores de LDL/metabolismo , ATPasas de Translocación de Protón Vacuolares/metabolismo , Células HEK293 , Células Hep G2 , Humanos
12.
Am J Physiol Cell Physiol ; 318(3): C664-C674, 2020 03 01.
Artículo en Inglés | MEDLINE | ID: mdl-31851527

RESUMEN

R-spondin3 (RSPO3), an activator of Wnt/ß-catenin signaling, plays a key role in tumorigenesis of various cancers, but its role in choriocarcinoma remains unknown. To investigate the effect of RSPO3 on the tumor growth of choriocarcinoma JEG-3 cells, the expression of RSPO3 in human term placenta was detected, and a stable RSPO3-overexpressing JEG-3 cell line was established via lentivirus-mediated transduction. The expression of biomarkers involved in tumorigenicity was detected in the RSPO3-overexpressing JEG-3 cells, and cell proliferation, invasion, migration, and apoptosis were investigated. Moreover, soft agar clonogenic assays and xenograft tumorigenicity assays were performed to assess the effect of RSPO3 on tumor growth in vitro and in vivo. The results showed that RSPO3 was widely expressed in human term placenta and overexpression of RSPO3 promoted the proliferation and inhibited the migration, invasion, and apoptosis of the JEG-3 cells. Meanwhile, RSPO3 overexpression promoted tumor growth both in vivo and in vitro. Further investigation showed that the phosphorylation levels of Akt, phosphatidylinositol 3-kinase (PI3K), and ERK as well the expression of ß-catenin and proliferating cell nuclear antigen (PCNA) were increased in the RSPO3-overexpressing JEG-3 cells and tumor xenograft. Taken together, these data indicate that RSPO3 promotes the tumor growth of choriocarcinoma via Akt/PI3K/ERK signaling, which supports RSPO3 as an oncogenic driver promoting the progression of choriocarcinoma.


Asunto(s)
Coriocarcinoma/metabolismo , Coriocarcinoma/patología , Trombospondinas/biosíntesis , Neoplasias Uterinas/metabolismo , Neoplasias Uterinas/patología , Adulto , Animales , Biomarcadores de Tumor/biosíntesis , Biomarcadores de Tumor/genética , Línea Celular Tumoral , Proliferación Celular/fisiología , Coriocarcinoma/genética , Femenino , Humanos , Ratones , Ratones Endogámicos BALB C , Ratones Desnudos , Embarazo , Trombospondinas/genética , Neoplasias Uterinas/genética , Ensayos Antitumor por Modelo de Xenoinjerto/métodos
13.
World J Gastroenterol ; 25(27): 3590-3606, 2019 Jul 21.
Artículo en Inglés | MEDLINE | ID: mdl-31367159

RESUMEN

BACKGROUND: Obesity is a major risk factor for a variety of diseases such as diabetes, nonalcoholic fatty liver disease, and cardiovascular diseases. Restricting energy intake, or caloric restriction (CR), can reduce body weight and improve metabolic parameters in overweight or obese patients. We previously found that Lingguizhugan decoction (LZD) in combination with CR can effectively lower plasma lipid levels in patients with metabolic syndrome. However, the mechanism underlying CR and LZD treatment is still unclear. AIM: To investigate whether CR and LZD improve metabolic parameters by modulating gut microbiota. METHODS: We extracted the water-soluble components out of raw materials and dried as LZD extracts. Eight-week old male C57BL/6 mice were treated with a 3-d treatment regime that included 24 h-fasting followed by gavage of LZD extracts for 2 consecutive days, followed by a normal diet (ND) ad libitum for 16 wk. To test the effects of gut microbiota on diet-induced obesity, 8-wk old male C57BL/6 mice received fecal microbiota transplantation (FMT) from CR and LZD-treated mice every 3 d and were fed with high-fat diet (HFD) ad libitum for 16 wk. Control mice received either saline gavage or FMT from ND-fed mice receiving saline gavage as mentioned above. Body weight was monitored bi-weekly. Food consumption of each cage hosting five mice was recorded weekly. To monitor blood glucose, total cholesterol, and total triglycerides, blood samples were collected via submandibular bleeding after 6 h fasting. Oxygen consumption rate was monitored with metabolic cages. Feces were collected, and fecal DNA was extracted. Profiles of gut microbiota were mapped by metagenomic sequencing. RESULTS: We found that CR and LZD treatment significantly reduced the body weight of mice fed with ND (28.71 ± 0.29 vs 28.05 ± 0.15, P < 0.05), but did not affect plasma total cholesterol or total triglyceride levels. We then transplanted the fecal microbiota collected from CR and LZD-treated mice under ND feeding to HFD-fed mice. Intriguingly, transplanting the mice with fecal microbiota from CR and LZD-treated mice potently reduced body weight (44.95 ± 1.02 vs 40.53 ± 0.97, P < 0.001). FMT also reduced HFD-induced hepatosteatosis, in addition to improved glycemic control. Mechanistic studies found that FMT increased OCR of the mice and suppressed the expression and protein abundance of lipogenic genes in the liver. Metagenomic analysis revealed that HFD drastically altered the profile of gut microbiota, and FMT modified the profile of the gut microbiota. CONCLUSION: Our study suggests that CR and LZD improve metabolic parameters by modulating gut microbiota.


Asunto(s)
Restricción Calórica , Microbioma Gastrointestinal/efectos de los fármacos , Enfermedad del Hígado Graso no Alcohólico/terapia , Obesidad/terapia , Extractos Vegetales/administración & dosificación , Animales , Terapia Combinada/métodos , Dieta Alta en Grasa/efectos adversos , Modelos Animales de Enfermedad , Microbioma Gastrointestinal/fisiología , Humanos , Mucosa Intestinal/efectos de los fármacos , Mucosa Intestinal/metabolismo , Mucosa Intestinal/microbiología , Metabolismo de los Lípidos/efectos de los fármacos , Lípidos/sangre , Hígado/efectos de los fármacos , Hígado/metabolismo , Masculino , Ratones , Ratones Endogámicos C57BL , Enfermedad del Hígado Graso no Alcohólico/etiología , Enfermedad del Hígado Graso no Alcohólico/microbiología , Obesidad/etiología , Obesidad/microbiología , Resultado del Tratamiento
14.
Theranostics ; 8(10): 2765-2781, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-29774074

RESUMEN

Rationale: The availability of therapeutics to treat pregnancy complications is severely lacking, mainly due to the risk of harm to the fetus. In placental malaria, Plasmodium falciparum-infected erythrocytes (IEs) accumulate in the placenta by adhering to chondroitin sulfate A (CSA) on the surfaces of trophoblasts. Based on this principle, we have developed a method for targeted delivery of payloads to the placenta using a synthetic placental CSA-binding peptide (plCSA-BP) derived from VAR2CSA, a CSA-binding protein expressed on IEs. Methods: A biotinylated plCSA-BP was used to examine the specificity of plCSA-BP binding to mouse and human placental tissue in tissue sections in vitro. Different nanoparticles, including plCSA-BP-conjugated nanoparticles loaded with indocyanine green (plCSA-INPs) or methotrexate (plCSA-MNPs), were administered intravenously to pregnant mice to test their efficiency at drug delivery to the placenta in vivo. The tissue distribution and localization of the plCSA-INPs were monitored in live animals using an IVIS imaging system. The effect of plCSA-MNPs on fetal and placental development and pregnancy outcome were examined using a small-animal high-frequency ultrasound (HFUS) imaging system, and the concentrations of methotrexate in fetal and placental tissues were measured using high-performance liquid chromatography (HPLC). Results: plCSA-BP binds specifically to trophoblasts and not to other cell types in the placenta or to CSA-expressing cells in other tissues. Moreover, we found that intravenously administered plCSA-INPs accumulate in the mouse placenta, and ex vivo analysis of the fetuses and placentas confirmed placenta-specific delivery of these nanoparticles. We also demonstrate successful delivery of methotrexate specifically to placental cells by plCSA-BP-conjugated nanoparticles, resulting in dramatic impairment of placental and fetal development. Importantly, plCSA-MNPs treatment had no apparent adverse effects on maternal tissues. Conclusion: These results demonstrate that plCSA-BP-guided nanoparticles could be used for the targeted delivery of payloads to the placenta and serve as a novel placenta-specific drug delivery option.


Asunto(s)
Nanopartículas/metabolismo , Trofoblastos/metabolismo , Animales , Antígenos de Protozoos/metabolismo , Inhibidores Enzimáticos/administración & dosificación , Inhibidores Enzimáticos/farmacocinética , Femenino , Humanos , Metotrexato/administración & dosificación , Metotrexato/farmacocinética , Ratones , Nanopartículas/efectos adversos , Embarazo
15.
J Immunol Res ; 2017: 9253208, 2017.
Artículo en Inglés | MEDLINE | ID: mdl-28164139

RESUMEN

Colostrum is the main external resource providing piglets with nutrients and maternal immune molecules. Astragalus polysaccharides (APS) have been used as immunopotentiators in vitro and several animal models. This study aimed to determine the effects of APS on immune factors in sow colostrum and milk. The sow diet was supplemented with APS one week before the expected delivery date. Colostrum and milk were collected and designated as 0 h- (onset of parturition), 12 h-, and 24 h-colostrum and 36 h-milk postpartum. Samples were measured using porcine immunoglobulin (Ig) G, IgM, classical swine fever virus antibody (CSFV Ab), epidermal growth factor (EGF), and insulin-like growth factor- (IGF-) 1 ELISA Quantitation Kits. Dietary supplementation of APS significantly enhanced the presence of IgG, IgM, EGF, and IGF-1 in 0 h-colostrum (P < 0.001). The blocking rates of CSFV Ab were increased in samples from APS-supplemented sow when compared to those from the matched samples without APS treatment. The results indicate that supplement of APS could improve the immune components in sow colostrum and/or milk; and status of some specific vaccination could be determined through using colostrum or early milk in sow.


Asunto(s)
Anticuerpos Antivirales/sangre , Planta del Astrágalo/metabolismo , Calostro/química , Suplementos Dietéticos , Factor de Crecimiento Epidérmico/sangre , Factor I del Crecimiento Similar a la Insulina/análisis , Preparaciones de Plantas/farmacología , Animales , Virus de la Fiebre Porcina Clásica/inmunología , Femenino , Inmunoglobulina G/sangre , Inmunoglobulina G/inmunología , Inmunoglobulina M/sangre , Inmunoglobulina M/inmunología , Polisacáridos/farmacología , Embarazo , Porcinos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...